第856章 法诺簇(2/5)
很快,他锁定了一个之前没怎么读过的数学家。
考切尔!
伊朗裔数学家,菲尔兹得主,清华丘老数学中心全职教授。
宋河记得德维特的数学神仙群聊里也有这尊大神,但他不打算直接去向大神请教问题,先自学一波再说。
毕竟邓浦和布置的题目难度不算太高,为了这点小事儿去叨扰大神,堪比让备战高考的学生去做小学拼音题,太浪费人家时间了。
考切尔在法诺簇领域相当有建树,这方面对宋河来说还很陌生,只接触过只言片语,但刚刚解题时,显然法诺簇是打开邓浦和题目的钥匙。
怎么显然的?
别问,问就是伟大数学家的直觉!
法诺簇的概念很简单,一种特殊代数簇,若X是域k上的光滑、完备、不可约代数簇,它的逆典范层KX’是丰富层,则称X为法诺簇。
但用起来总感觉别扭,主要是邓浦和的这道题目,涉及到三维以上的法诺簇,这就很难受了,法诺簇的小平维数等于一二,到三维以上虽然是单直纹,却不一定有理,叫人很头疼。
宋河孜孜不倦啃起考切尔的论文,很快戴上痛苦面具。
“真难啊!”宋河抱怨,“弄死我得了!”
本章未完,下一页继续